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Travel route recommendation services that recommend a sequence of points-of-interest (POIs) 
for tourists are very useful in location-based social networks (LBSNs). Currently, most of the 
work that addresses this task are focusing on personalization and POI features, which estimate 
user-location relations while rarely considering transitions, i.e., the relationships between 
locations. To this end, we propose a latent factorization model that learns transition patterns 
with enhanced spatial-temporal features between locations. Furthermore, we recommend travel 
routes by combining knowledge on locations and transitions. Experimental results with public 
datasets reveal that our approaches improve upon the performance of conventional methods. 
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Introduction 

The development of LBSN services has increased the number of user-location 

interaction behaviours via various devices. It is an important task to help tourists planning their 

travel routes in an unfamiliar city. Travel route recommendation, which is addressed in this 

paper, aims to recommend a sequence of POIs and to satisfy tourists’ trip constraints.  

 Recent studies formulate travel route recommendation problems based on the 

orienteering problem model (Tsiligirides, 1984) in which tourists earn a reward when they visit 

one POI. The travel path with the maximum reward score under several trip constraints will be 

recommended (Friggstad et al., 2018; Lim et al., 2015; Vansteenwegen et al., 2011). The user-

location relations (i.e., matching users and locations) are studied, and reward scores are 

assigned to POIs which can be regarded as tourist preferences on POIs. 

 Generally, a travel route consists of nodes (i.e., locations) and edges (i.e., the transition 

between locations). Transition patterns can be regarded as location-location relations. The 

higher the weight on the transition, the tighter the connection between two locations. Transition 

patterns may also imply some valuable sightseeing routes (paths), since some POIs are in a 

sequential structure or a large area, and walking through these paths is also a part of the trip 

(e.g., a park or a street along the way to the next POI).  

However, related work rarely considers the edges (i.e., transition knowledge) of the 

specific target travel city. Most of them model edges as constraints: In general orienteering-

problem based approaches (Vansteenwegen et al., 2011; Kurata et al., 2011), the travel time 

cost on transitions is considered; traffic conditions are considered in (Chen et al., 2015), which 

uses traffic-aware edge constraints; uncertain travel time between POIs is considered in (Zhang 

et al., 2016). In (Zhuang et al., 2017), POIs are recommended by using enriched location-

location features. In (Liu et al., 2016), the users’ next visited location is predicted, while a deep 

learning approach with tong short-term memory (LSTM) that integrates next-location 

prediction into travel route planning is proposed in (Xu et al., 2017), which can be regarded as 
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leveraging transition patterns. In (Chen et al., 2016), transition reward is included into the travel 

route recommendation objective function, and travel routes based on both POIs and transition 

probability are recommended. Their transition probability is factorized from explicit feature-

pairs such as the POI popularity and category (i.e., shopping-park or popular-unpopular pairs).  

Therefore, the dependency between locations caused by spatial-temporal factors has 

not been considered so far in previous works that combine both points and transitions to 

recommend travel route. In this paper, we propose a spatial-temporal enhanced latent 

factorization model to study the connections between locations, and the experimental results 

reveal the efficiency of spatial-temporal influences between locations. 

 

Travel Route Recommendation 

 1. Objective function: Given a user query (𝑝#, 𝑝%, 𝐿) in which 𝑝# and 𝑝% represent the 

origin and destination points, respectively. 𝐿 represents the travel length budget, i.e., how many 

POIs one wants to visit. A common travel route recommendation problem definition and 

objective function are given in (Lim et al., 2015; Chen et al., 2016). Basically, there are 𝑁 POIs; 

and let 𝑃 = {𝑝,, 𝑝-, … , 𝑝/} in the target travel city. A travel route is recommended according 

to the user query by solving the following objective function: 

max44𝑥67𝑅(𝑝7|𝑝6)
/

7:-

/;,

6:,

 (1) 

𝑅 is the reward function; 𝑁 is the available number of POIs in the city; 𝑥67 is a binary indicator 

that equals 1 when users travel from 𝑝6 to 𝑝7, and equals 0 otherwise. It is subject to several 

constraints such as the requirement that a travel route must start from 𝑝# and end at 𝑝% and the 

travel budget. In this paper, we consider the travel length budget. Due to the space limitation, 

please refer to related work for the details of that constraints.  
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 Similar to (Chen et al., 2016), we model transition rewards into the reward function in 

Eq. 1 as below: 

𝑅<𝑝7=𝑝6> = 	𝛼𝑅A<𝑝7> + (1 − 𝛼)𝑅E(𝑝7|𝑝6), (2) 

where 𝑅A  and 𝑅E  represent point reward and transition reward, which are defined in the 

following sections; and 𝛼 ∈ (0, 1) is a trade-off parameter that indicates the importance of the 

point and transition rewards. 

 2. POI reward: We assign rewards to POIs by considering user-location relations. 

Since it is a well-studied area, we directly leverage the proposed method in (Chen et al., 2016) 

to assign rewards to POIs. It is called PoiRank, which uses Rank Support Vector Machine 

(RankSVM) (Ching-Pei, 2014) with features such as category, popularity, and average visit 

duration to rank all POIs. Finally, a softmax function is used to transfer rank scores to POI 

rewards. They are represented as 𝑅A<𝑝7>. 

 3. Transition reward: To improve the recommended travel route quality, which makes 

the route planning order aware, we regard transition patterns as rewards on transitions. Since 

transitions that we can observe are incomplete and the new POI has no transitions, we need to 

infer transition rewards from observed data. Unlike explicitly factorize feature pairs in (Chen 

et al., 2016), we use a latent matrix factorization method with enhanced spatial-temporal 

features to infer the transition patterns. Transition rewards are represented as: 

𝑅E<𝑝7=𝑝6> = 	𝑇I6,7,  (3) 

where 𝑇I6,7 is the inferred transition reward matrix as defined below. 

 1) Weighted transition matrix: There are users’ transitions between locations, i.e., 

moving from POI 𝑝6  to 𝑝7  according to travel routes data. In this manner, we capture a 

weighted transition matrix represented by 𝑇J 	∈ 	ℝ|L|×|L|, where each entry 𝑇J6,7 denotes the 

observed transition frequency between POIs 𝑝6  and 𝑝7 , and |𝑉| is the number of POIs in a 

particular city. Then 𝑇 is equal to 𝑇J normalized by the maximum entry; 𝑇 is regarded as the 
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relative transition weights between locations; similar to the idea of collaborative filtering, in 

which POIs may have common connections to other POIs owing to common features that 

match very well. One reasonable solution is to factorize the observed weighted transition 

matrix 𝑇 as below: 

𝑇	 ≈ 	𝑉#𝑀𝑉QE,         (4) 

where 𝑉# ∈ 	ℝ|L|×R  and 𝑉Q ∈ 	ℝ|L|×R  represent latent features of a source and a destination point, 

respectively. 𝑀 is the interaction matrix that represents the relationship between locations, and 

𝑘 specifies the number of latent features. 

 2) Spatial-temporal influences: Spatial and temporal influences are very important in 

location recommendation tasks. Inspired by (Lian et al., 2014), we can explicitly embed spatial-

temporal influences to improve our weighted transition matrix factorization model. 

For spatial influence, we consider the simple assumption that the closer POIs are the 

more likely they are visited. We calculate the distances between POIs using the Haversine 

formula (Sinnott 1984), then take the reciprocal and normalize each entry by the maximum 

value in the matrix to construct the POI spatial influence matrix 𝐺	 ∈ 	ℝ|L|×|L|. The spatial 

influence matrix can be regarded as additional global knowledge that each entry represents the 

confidence of location-location spatial influence, where the distance is smaller when the 

influence is larger. The spatial influence matrix can be written as 𝐺	 ≈ 	𝑉U𝑉UE , where 𝑉U  

represents the spatial feature between POIs and it can get be obtained by factorizing 𝐺 through 

standard non-negative matrix factorization (NMF) (Lee et al., 1999). 

For temporal influence, we consider the relationship between the check-in time of each 

POI and the user transition time interval. Each POI has an available open time window and 

visits vary over 24 hours (e.g., Figure 1). We assume that the visit time of a location over a day 

follows a mixed Gaussian distribution and has visit peaks. Also, we observe that users’ 

transitions between locations in different cities are almost all less than 2 hours (e.g., Figure 2), 
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and we use a Poisson distribution to fit it. For example, two locations’ spatial influences are 

higher due to a smaller distance (i.e., a transition from one to the other is more likely), while 

their visit peaks have a big gap (e.g., one has a peak in the morning and the other in the night) 

that indicates that the transition possibility would not be very high. Therefore, if two locations’ 

visit peaks better match the users’ transition interval, the temporal influence is higher. 

  

Figure 1: Visit time distributions; examples 
of two POIs over 24 hours 

Figure 2: Visit time interval distributions in 
the Toronto dataset 

 

A gaussian mixture model (GMM) is applied to fit the check-in data. It automatically 

fits the data and the GMM component ranges from 1 to 3, which corresponds to morning, 

afternoon, and night. Then the temporal influence matrix 𝐶J 	∈ 	ℝ|L|×|L|  is constructed by 

matching the mean differences between locations with the fitted transition time interval 

distribution. 𝐶 is equal to the normalized 𝐶J that represents the temporal influence between 

POIs. We represent our constructed temporal influence matrix 𝐶  as 𝐶	 ≈ 	𝑉W𝑉WE , where 𝑉W  

represents the latent temporal features between POIs and it can be obtained through standard 

NMF. 

We explicitly combine the spatial and temporal influences linearly to enrich Eq. 4 as: 

𝑇	 ≈ 	𝑉#𝑀𝑉QE +	𝑉U𝑀𝑉UE +	𝑉W𝑀𝑉WE (5) 

The latent factors 𝑉#, 𝑉Q and 𝑀 can be computed by solving the following function: 

min
LZ,L[,\

]𝐼 ⊙ (𝑇 −	𝑉#𝑀𝑉QE −	𝑉U𝑀𝑉UE −	𝑉W𝑀𝑉WE)]
-
+ 	𝜆[	‖𝑉#‖- +	‖𝑀‖- +	‖𝑉Q‖-	],         (6) 
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where ∥∙∥-  denotes the Frobenius norm; 𝐼  is a binary weighted matrix with entries 𝐼#,Q 

indicating whether transitions have been observed; and 𝜆 is the regularization parameter.  

Finally, we can infer the transition matrix using Eq. 5 and normalize it by the maximum 

entry to obtain the transition reward matrix 𝑇I . We use the Theano framework 

(https://github.com/Theano/Theano) to learn latent variables and solve the objective function 

in Eq. 1 with the Gurobi optimization package (http://www.gurobi.com). 

  

Experiment 

To evaluate our proposed approaches, we apply our methods to public location-based 

social network datasets provided by (Chen et al., 2016; Lim et al., 2015). These datasets capture 

user travel routes extracted from Flickr photos; the statistics are listed in Table 1.  

In our experimental settings, we randomly split each city dataset into five. We use five-

fold cross-validation to evaluate different approaches, which means that when testing on a part 

of the dataset, we use the other data to train different models. Specifically, we consider users’ 

real-life travel routes with more than 3 check-ins and test the following methods on each city 

dataset: 

PoiPop: Recommends a travel route only based on the ordered POI popularity. 

PoiRank, Markov, Rank+Markov: Proposed in (Chen et al., 2016), these methods 

recommend routes based on i) the ranking of POI scores, ii) transition probabilities through 

explicit feature pairs, and iii) their combination.  

Table 1: Statistics of Travel Route Datasets 

Dataset #Photos  #Check-ins #Travel routes #Users 
Edinburgh 82,060 33,944 5,028 1,454 

Glasgow 29,019 11,434 2,227 601 

Osaka 392,420 7,747 1,115 450 

Toronto 157,505 39,419 6,057 1,395 
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Tmf, GTmf, TGTmf: Our proposed methods that recommend routes based on i) 

weighted transition matrix factorization, ii) spatial influence, and iii) spatial-temporal influence. 

Rank + Tmf, Rank + GTmf, Rank + TGTmf: Our proposed methods that combine 

location and transition rewards. 

To compare all the mentioned approaches, we evaluate the performance of each method 

based on users’ real-life travel routes using the following metrics: 

F1 score: The F1 score is a common metric for evaluating POI and travel route 

recommendations. It evaluates the recommended results with the user’s real travel route using 

the harmonic mean of recall and precision of recommended locations. 

Pairs-F1 score: Proposed in (Chen et al., 2016), the Pairs-F1 score is used to evaluate 

both POI identity and visiting simultaneously. Pairs-F1 computes the F1 score of a pair of points 

and has a value between 0 and 1. It will achieve a score of 1 if and only if the POIs and the 

visiting order are exactly the same as the user’s real travel route. 

 

Results 

The performance of the different approaches for each of the city datasets is summarized 

in Table 2 and Table 3, in terms of F1 score and Pairs-F1 score, respectively. The best method 

for each dataset is shown in bold and the second best in italic. 

PoiRank improves upon the performance of PoiPop, which is only based on POI 

popularity, by leveraging more features. Among all the transition-based approaches, directly 

factorizing the weighted transition matrix had no effect that compares to the explicit 

factorization method Markov, which indicates that the latent factor model includes those 

features. Subsequently, the performance improved drastically when additional spatial and 

temporal influences were considered. Generally, we found that the combination method with a 

trade-off parameter 𝛼 of around 0.7 achieves the best performance, which indicates that point 
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rewards are relatively more important. Furthermore, the methods Rank+GTmf and 

Rank+TGTmf that we proposed outperformed baseline methods on different datasets, which 

indicates that spatial and temporal information is efficient in the transition patterns inference. 

Table 2: Performance in Terms of F1 Score 

 Edinburgh  Glasgow Osaka Toronto 
PoiPop 0.660 ± 0.158 0.690 ± 0.164 0.640 ± 0.130 0.664 ± 0.120 

PoiRank 0.679 ± 0.145 0.708 ± 0.148 0.724 ± 0.160 0.749 ± 0.164 

Markov 0.667 ± 0.152 0.741 ± 0.165 0.688 ± 0.152 0.711 ± 0.151 

Tmf 0.661 ± 0.157 0.660 ± 0.157 0.660 ± 0.136 0.691 ± 0.157 

GTmf 0.658 ± 0.170 0.769 ± 0.190 0.671 ± 0.172 0.691 ± 0.157 

TGTmf 0.682 ± 0.172 0.777 ± 0.184 0.729 ± 0.186 0.722 ± 0.175 

Rank + Markov 0.705 ± 0.162 0.756 ± 0.165 0.720 ± 0.166 0.743 ± 0.165 

Rank + Tmf 0.689 ± 0.161 0.733 ± 0.172 0.738 ± 0.174 0.745 ± 0.160 

Rank + GTmf 0.709 ± 0.163 0.772 ± 0.189 0.741 ± 0.169 0.764 ± 0.172 

Rank + TGTmf 0.717 ± 0.163 0.786 ± 0.178 0.753 ± 0.187 0.767 ± 0.170 

 

Table 3: Performance in Terms of Pairs-F1 Score 

 Edinburgh  Glasgow Osaka Toronto 
PoiPop 0.399 ± 0.253 0.407 ± 0.296 0.324 ± 0.193 0.364 ± 0.201 

PoiRank 0.399 ± 0.226 0.437 ± 0.252 0.468 ± 0.281 0.512 ± 0.293 

Markov 0.385 ± 0.233 0.503 ± 0.298 0.416 ± 0.261 0.442 ± 0.256 

Tmf 0.380 ± 0.236 0.375 ± 0.246 0.360 ± 0.200 0.420 ± 0.261 

GTmf 0.412 ± 0.277 0.558 ± 0.332 0.398 ± 0.273 0.476 ± 0.296 

TGTmf 0.403 ± 0.279 0.576 ± 0.328 0.496 ± 0.319 0.540 ± 0.308 

Rank + Markov 0.446 ± 0.265 0.526 ± 0.299 0.470 ± 0.292 0.502 ± 0.292 

Rank + Tmf 0.419 ± 0.252 0.492 ± 0.298 0.501 ± 0.308 0.505 ± 0.288 

Rank + GTmf 0.461 ± 0.277 0.563 ± 0.330 0.509 ± 0.304 0.539 ± 0.303 

Rank + TGTmf 0.471 ± 0.276 0.588 ± 0.325 0.537 ± 0.326 0.547 ± 0.306 
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Conclusion 

 This paper describes a technique that uses locations and transitions extracted from 

travel route data to recommend travel routes according to user queries. Experiment results 

demonstrate that our approaches outperform conventional methods on different datasets by 

using spatial-temporal enhanced transition patterns inference. In our future work, we would 

like to apply the method proposed in this paper to Kyoto city and evaluate it with real tourists. 
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